Оглавление
- Источники фенола и формальдегида в закрытых помещениях (квартирах, коттеджах, загородных домах).
- Химические свойства фенола
- Структурная изомерия
- Химические свойства пентана
- Правила составления названий алканов
- Тривиальная номенклатура
- Органическая химия
- Биохимические основы газопоглотительной способности растений жилых зон.
- Реакции замещения
- Вхождение
- Химические свойства глюкозы
- 6. Технологические способы снижения эмиссии фенола и формальдегида из древесно-стружечных плит.
- Амины
Источники фенола и формальдегида в закрытых помещениях (квартирах, коттеджах, загородных домах).
Фенол и формальдегид относятся к числу наиболее распространенных загрязняющих веществ в воздухе городской среды. Естественным путем они образуются в ходе фотохимических реакций и в результате распада органических веществ. Однако большая часть их концентрации в воздухе обеспечивается искусственными загрязнителями.
Главным искусственным антропогенным источником загрязнения воздуха фенолами и формальдегидами является автомобильный транспорт.
Внутри помещений основные загрязнители — это древесно-стружечные (ДСП) и древесноволокнистые плиты (ДВП), ряд полимеров, строительных и отделочных материалов. Наибольшей эмиссией (выделением вредных веществ) обладают ДСП и ДВП (совместно называемые древесно-композиционные материалы — ДКМ), несколько меньшей — линолеумы, пенопласт, стеклопластики.
Формальдегид может поступать в организм напрямую с табачным дымом и с продуктами сгорания бытового газа.
В особую группу риска, по степени воздействия фенола и формальдегида из воздуха закрытых пространств попадают дети, проводящие большую часть времени суток в закрытых помещениях (школы, дошкольные учреждения, квартиры). На сегодняшний день в РФ приняты стандарты, согласно которым плиты ДКМ, по степени эмиссии формальдегида и фенола делятся на несколько классов:
Класс |
Степень эмиссии, мг/100 г |
Е2 |
10-30 |
Е1 |
4-10 |
Е0,5 |
До 4 |
Хотя показатель Е2 до сих пор числится в стандартах на плиты, еще в 2000 году Роспотребнадзор запретил к использованию продукцию, имеющую такое содержание поллютантов (загрязнителей). В 2012 года был принят регламент таможенного союза «О безопасности продукции», согласно которому количество выделяющегося из мебели формальдегида не должно превышать 0,01 мг/м3 воздуха.Имеются весьма информативные исследования, выявившие связь между насыщенностью закрытых помещений полимерными отделочными материалами и количеством фенолформальдегидных поллютантов в воздухе. Исследования проводились в учебных помещениях. Было выявлено, что активная эмиссия в основном происходит в случае использования новых отделочных материалов. При своевременном проветривании, и по прошествии 5-6 лет после проведения ремонта, превышения нормативных значений по фенолу и формальдегиду не выявлено. Наблюдалось превышение нормативных значений в компьютерных классах в 65% случаев. Наиболее явно превышение норм происходило при использовании в отделке помещений изоляционных материалов, потолочной гипсово-волокнистой плитки, линолеума, пластиковых дверей, подвесных потолков, панелей из ДВП.
С целью установления влияния количества полимерных материалов на количество выделяемых в воздух фенола и формальдегида, была определена насыщенность помещения потенциально опасными отделочными материалами. Установлена закономерность, показывающая, что если наполненность закрытых помещений полимерными отделочными материалами составляет меньше 1 м2 на кубометр закрытого помещения, то превышения гигиенического норматива не наблюдается. При увеличении наполненности, соответственно, регистрируется превышение нормы по фенолу и формальдегиду в воздухе.
На общую концентрацию поллютантов влияет температурный режим в помещении и степень влажности воздуха. Также важен человеческий фактор и соблюдение режима проветривания и обновления воздуха в помещении. Так, концентрация фенола и формальдегида остается на стабильном уровне при нормальной температуре воздуха 18-25ºС, а при повышении температуры выше на 5 градусов, концентрации веществ могут увеличиться в два раза. Рост влажности также приводит к увеличению концентраций поллютантов.
Итог — можно так или иначе влиять на концентрацию этих вредных веществ в воздухе помещений, но полностью избавиться, при наличии прямых источников, невозможно.
Что же представляют из себя фенол и формальдегид?
Химические свойства фенола
Кислотные свойства фенола
Атом водорода гидроксильной группы обладает кислотным характером. Т.к. кислотные свойства у фенола выражены сильнее, чем у воды и спиртов, то фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов:
Кислотность фенолов зависит от природы заместителей (донор или акцептор электронной плотности), положения относительно ОН-группы и от количества заместителей. Наибольшее влияние на ОН-кислотность фенолов оказывают группы, расположенные в орто- и пара-положениях. Доноры увеличивают прочность связи О-Н (тем самым уменьшая подвижность водорода и кислотные свойства), акцепторы уменьшают прочность связи О-Н, при этом кислотность возрастает:
Однако кислотные свойства у фенола выражены слабее, чем у неорганический и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше,чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол.
Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:
Качественная реакция на фенол
Фенол реагирует с хлоридом железа (3) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах.Другие фенолы,содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(3).
Реакции бензольного кольца фенола
Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.
Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:
Эта реакция, так же как и реакция с хлоридом железа(3), служит для качественного обнаружения фенола.
2. Нитрирование фенола также происходит легче, чем нитрирование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пароизомеров нитрофенола:
При использовании концентрированной азотной кислоты образуется 2,4,6, тринитритфенол-пикриновая кислота, взрывчатое вещество:
3. Гидрирование ароматического ядра фенола в присутствии катализатора проходит легко:
4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.
Взаимодействие фенола с формальдегидом можно описать схемой:
В молекуле димера сохраняются «подвижные» атомы водорода, а значит,возможно дальнейшее продолжение реакции при достаточном количестве реагентов:
Реакция поликонденсаци, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта(воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:
Образование линейных молекул происходит при обычной температуре. Проведение этой же реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде.В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимера на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению,действию воды, щелочей, кислот.Они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин,полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы,сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе.Таким образом, фенол и продукты на его основе находят широкое применение.
Структурная изомерия
Для пентана характерна структурная изомерия – изомерия углеродного скелета.
Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.
Изомеры углеродного скелета отличаются строением углеродного скелета.
Например.
Для углеводородов состава С5Н12 существуют три изомера углеродного скелета: н-пентан, метилбутан (изопентан), диметилпропан (неопентан) |
Пентан | Изопентан |
CH3-CH2-CH2-CH2-CH3 | CH3-CH(CH3)-CH2-CH3 |
Для пентана не характерна пространственная изомерия.
Химические свойства пентана
Пентан – предельный углеводород, поэтому он не может вступать в реакции присоединения.
Для пентана характерны реакции:
- разложения,
- замещения,
- окисления.
Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.
Поэтому для пентана характерны радикальные реакции.
Пентан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.
Правила составления названий алканов
1. Выбирают главную углеродную цепь
Главная цепь — это самая длинная и самая разветвленная непрерывная последовательность углеродных атомов
При этом неважно, как нарисованы на схеме углеродные атомы (вверх, вниз, влево, вправо). При этом углеводородные радикалы, которые не входят в главную цепь, являются в ней заместителями
Главная цепь должна быть самой длинной.
Например, в молекуле на рисунке главной является цепь, отмеченная на рисунке а |
2. Главная цепь должна быть самой разветвленной.
Например, в молекуле, изображенной на рисунках а и б, выделены цепи с одинаковым числом атомов углерода. Но главной будет цепь, изображенная на рисунке а, т.к. от нее отходит 2 заместителя, а от главной цепи на рисунке б – один: |
3. Нумеруют атомы углерода в главной цепи.
Нумерацию следует начинать с более близкого к старшей группе конца цепи.
При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.
Например, правильная нумерация в главной углеродной цепи |
Тривиальная номенклатура
Тривиальная номенклатура сложилась исторически по мере зарождения и развития исторической химии, до появления единой системы наименования органических веществ.
Многие тривиальные названия используются и сейчас. В таблице ниже приведены тривиальные названия основных органических веществ, а также их названия по систематической номенклатуре.
Название по тривиальной номенклатуре | Название по систематической номенклатуре | Формула вещества |
Углеводороды и галогенпроизводные |
||
Изобутан | 2-метилпропан | CH3-CH(CH3)-CH3 |
Этилен | Этен | |
Пропилен | Пропен | CH2=CH-CH3 |
Дивинил | Бутадиен-1,3 | CH2=CH-CH=CH2 |
Изопрен | 2-Метилбутадиен-1,3 | CH2=C(СH3)-CH=CH2 |
Винилацетилен | Бутен-1-ин-3 | CH≡C-CH=CH2 |
Толуол | Метилбензол | |
Кумол | Изопропилбензол | |
орто-Ксилол,
мета-ксилол, пара-ксилол |
1,2-Диметилбензол,
1,3-Диметилбензол, 1,4-Диметилбензол |
|
Стирол | Винилбензол | |
Хлороформ | Трихлорметан | СHCl3 |
Хлоропрен | 2-хлорбутадиен-1,3 | CH2=C(Cl)-CH=CH2 |
Название по тривиальной номенклатуре | Название по систематической номенклатуре | Формула вещества |
Кислородсодержащие и азотсодержащие вещества |
||
Бензиловый спирт | Фенилметанол | |
Этиленгликоль | Этандиол-1,2 | CH2OH-CH2OH |
Глицерин | Пропантриол-1,2,3 | CH2OH-CHOH-CH2OH |
орто-Крезол,
мета-крезол, пара-крезол |
2-Метилфенол,
3-метилфенол, 4-метилфенол |
|
Формальдегид | Метаналь | CH2=O |
Ацетальдегид | Этаналь | CH3-CH=O |
Анилин | Фениламин |
Название по тривиальной номенклатуре | Название по систематической номенклатуре | Формула вещества |
Карбоновые кислоты |
||
Муравьиная кислота | Метановая кислота | HCOOH |
Уксусная кислота | Этановая кислота | CH3COOH |
Пропионовая кислота | Пропановая кислота | CH3CH2COOH |
Масляная кислота | Бутановая кислота | CH3CH2CH2COOH |
Щавелевая кислота | Этандиовая кислота | HOOC-COOH |
Бензойная кислота | Фенилмуравьиная кислота | C6H5COOH |
Органическая химия
Формальдегид является строительным материалом для синтеза многих других соединений, имеющих специализированное и промышленное значение. Он проявляет большинство химических свойств других альдегидов, но более реакционноспособен.
Самоконденсация и гидратация
Формальдегид, в отличие от большинства альдегидов, самопроизвольно олигомеризуется. Тример представляет собой 1,3,5-триоксан , а полимер называется параформальдегидом . Было выделено много циклических олигомеров. Точно так же формальдегид гидратируется с образованием геминального диола метандиола , который далее конденсируется с образованием олигомеров HO (CH 2 O) n H. Мономерный CH 2 O встречается редко.
Окисление
Он легко окисляется кислородом воздуха до муравьиной кислоты . По этой причине коммерческий формальдегид обычно загрязнен муравьиной кислотой.
Гидроксиметилирование и хлорметилирование
Формальдегид реагирует со многими соединениями, приводя к гидроксиметилированию :
- ХН + СН 2 О → Х-СН 2 ОН
(Х = R 2 N, RC (O) NR ‘, SH). Образующиеся гидроксиметилпроизводные обычно вступают в дальнейшую реакцию. Таким образом, амины дают гексагидро-1,3,5-триазины :
- 3 RNH 2 + 3 CH 2 O → (RNCH 2 ) 3 + 3 H 2 O
Точно так же в сочетании с сероводородом он образует тритиан :
- 3 СН 2 О + 3 Н 2 S → (СН 2 S) 3 + 3 Н 2 О
В присутствии кислот он участвует в реакциях электрофильного ароматического замещения ароматическими соединениями с образованием гидроксиметилированных производных:
- ArH + CH 2 O → ArCH 2 OH
При проведении в присутствии хлористого водорода продукт представляет собой хлорметильное соединение, как описано в разделе « Хлорметилирование Бланка» . Если арен богат электронами, как в фенолах, происходит сложная конденсация. С 4-замещенными фенолами получают каликсарены . Фенол дает полимеры.
Биохимические основы газопоглотительной способности растений жилых зон.
Чрезвычайно интересным представляется определение биохимического механизма поглощения и преобразования растениями органических загрязняющих веществ. Для решения этого вопроса, в Новосибирском отделении СО РАН были проведены исследования:• выделение и анализ первичных продуктов взаимодействия формальдегида с компонентами тканей растений;• изучены механизмы начальных стадий процесса поглощения поллютантов;• наблюдение физиологического отклика растений на присутствие в воздухе газообразных токсикантов.
Объектами исследования служили каланхоэ Дегремона и фикус Бенджамина. Растения подвергали повышенных концентраций газообразного формальдегида (100-300 мкг/м3) в течение определенного времени, затем исследовали их химический состав при помощи хроматографии. В ходе проведения эксперимента было установлено, что при газопоглощении формальдегида в тканях растений активно образуются различные органические вещества:
• Метилированные производные кверцитина. Их присутствие означает, что под воздействием формальдегида усиливается выработка флавоноидов. Формальдегид при этом выступает, как метилирующий агент;• Хиноны. Их количество растет экспоненциально воздействию формальдегида;• Альдегидная фаза с числом атомов углерода 6-7. Эти альдегиды не являются токсичными, в отличие от формальдегида;• Сахара. Наиболее вероятно, что формальдегид выступает как полупродукт в синтезе углеводов в тканях растений. Этот результат позволяет предположить, что растения способны использовать газообразный формальдегид, как элемент питания.
Одновременно с синтезом этих соединений под воздействием формальдегида в растениях снижается количество полифенолов. Возможная причина кроется в активном воздействии токсиканта на фермент полифенолоксидазу, которая переводит полифенолы в соединения хиноидной природы.
В ходе эксперимента описаны лишь существенные изменения в биохимическом составе тканей исследуемых растений, которые удалось зафиксировать и идентифицировать.
В заключение можно сказать, что растения, которые обладают способностью поглощать органические вещества из газовой фазы, в большинстве случаев метаболизируют их с образованием продуктов, физиологически свойственных растению.
Реакции замещения
В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.
1.1. Галогенирование
Пентан реагирует с хлором и бромом на свету или при нагревании.
При хлорировании пентана образуется смесь хлорпроизводных.
Например, при хлорировании пентана образуются 1-хлорпентан, 2-хлорпентан и 3-хлорпентан:
CH3-CH2-CH2-CH2-CH3 + Cl2 → CH3-CH2-CH2-CH2-CH2Cl + HCl CH3-CH2-CH2-CH2-CH3 + Cl2 → CH3-CH2-CH2-CHCl-CH3 + HCl CH3-CH2-CH2-CH2-CH3 + Cl2 → CH3-CH2-CHCl-CH2-CH3 + HCl |
Бромирование протекает более медленно и избирательно.
Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.
С третичный–Н > С вторичный–Н > С первичный–Н |
Например, при бромировании пентана преимущественно образуются 3-бромпентан и 2-бромпентан: CH3-CH2-CH2-CH2-CH3 + Br2 → CH3-CH2-CH2-CHBr-CH3 + HBr CH3-CH2-CH2-CH2-CH3 + Br2 → CH3-CH2-CHBr-CH2-CH3 + HBr |
1.2. Нитрование пентана
Пентан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пентане замещается на нитрогруппу NO2.
Например. При нитровании пентана образуются преимущественно 2-нитропентан и 3-нитропентан: |
CH3-CH2-CH2-CH2-CH3 + HNO3 → CH3-CH2-CH2-CHNO2-CH3 + H2O
CH3-CH2-CH2-CH2-CH3 + HNO3 → CH3-CH2-CHNO2-CH2-CH3 + H2O
Вхождение
На процессы в верхних слоях атмосферы приходится до 90% общего содержания формальдегида в окружающей среде. Формальдегид представляет собой промежуточное соединение при окислении (или сгорании ) метана , а также других углеродных соединений, например, при лесных пожарах , выхлопных газах автомобилей и табачном дыме . При образовании в атмосфере под действием солнечного света и кислорода на атмосферный метан и другие углеводороды он становится частью смога . Формальдегид также был обнаружен в космосе (см. Ниже).
Формальдегид и его аддукты повсеместно встречаются в живых организмах. Он образуется при метаболизме аминокислот и обнаруживается в кровотоке человека и других приматов в концентрациях примерно 0,1 миллимоляра. Эксперименты, в которых животные подвергаются воздействию атмосферы, содержащей формальдегид, меченный изотопами, показали, что даже у животных, подвергшихся преднамеренному воздействию, большая часть аддуктов формальдегид-ДНК, обнаруженных в тканях, не относящихся к дыхательным путям, происходит из эндогенно продуцируемого формальдегида.
Формальдегид не накапливается в окружающей среде, потому что он расщепляется в течение нескольких часов под действием солнечного света или бактерий, присутствующих в почве или воде. Люди быстро метаболизируют формальдегид, превращая его в муравьиную кислоту , поэтому он не накапливается в организме.
Межзвездный формальдегид
Формальдегид, по-видимому, является полезным зондом в астрохимии из-за преобладания дублетных переходов 1 10 ← 1 11 и 2 11 ← 2 12 K. Это была первая многоатомная органическая молекула, обнаруженная в межзвездной среде . С момента первого обнаружения в 1969 году его наблюдали во многих регионах галактики . Из-за широкого интереса к межзвездному формальдегиду, он был тщательно изучен, что привело к появлению новых внегалактических источников. Предлагаемый механизм образования — гидрирование льда CO:
- H + CO → HCO
- HCO + H → CH 2 O
HCN , HNC , Н 2 СО и пыли также наблюдались внутри волосяные семенные придатки из кометы С / 2012 F6 (Леммон) и С / 2012 S1 (МНСН) .
Химические свойства глюкозы
Химические свойства глюкозы, как и других альдоз, обусловлены присутствием в ее молекуле: а)альдегидной группы; б) спиртовых гидроксилов; в) полуацетального (гликозидного) гидроксила.
Специфические свойства
1. Брожение (ферментация) моносахаридов
Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:
1) Спиртовое брожение
2) Молочнокислое брожение
(образуется в организмах высших животных при мышечных сокращениях).
3) Маслянокислое брожение
4) Лимоннокислое брожение
Реакции с участием альдегидной группы глюкозы (свойства глюкозы как альдегида)
1. Восстановление (гидрирование) с образованием многоатомного спирта
В ходе этой реакции карбонильная группа восстанавливается и образуется новая спиртовая группа:
Cорбит содержится во многих ягодах и фруктах, особенно много сорбита в плодах рябины.
2. Окисление
1) Окисление бромной водой
Качественные реакции на глюкозу как альдегид!
Протекающие в щелочной среде при нагревании реакции с аммиачным раствором Ag2O (реакция серебряного зеркала») и с гидроксидом меди (II) Cu (OH)2 приводят к образованию смеси продуктов окисления глюкозы.
2) Реакция серебряного зеркала
Соль этой кислоты – глюконат кальция – известное лекарственное средство.
Видеоопыт «Качественная реакция глюкозы с аммиачным раствором оксида серебра (I)»
3) Окисление гидроксидом меди (II)
В ходе этих реакций альдегидная группа – СНО окисляется до карбоксильной группы – СООН.
Реакции глюкозы с участием гидроксильных групп (свойства глюкозы как многоатомного спирта)
1. Взаимодействие с Cu (ОН)2с образованием глюконата меди (II)
Качественная реакция на глюкозу как многоатомный спирт!
Подобно этиленгликолю и глицерину, глюкоза способна растворять гидроксид меди (II), образуя растворимое комплексное соединение синего цвета:
Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет.
В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение.
Видеоопыт «Качественная реакция глюкозы с гидроксидом меди (II)»
2. Взаимодействие с галогеналканами с образованием простых эфиров
Являясь многоатомным спиртом, глюкоза образует простые эфиры:
Реакция происходит в присутствии Ag2O для связывания выделяющегося при реакции НI.
3. Взаимодействие с карбоновыми кислотами или их ангидридами с образованием сложных эфиров.
Например, с ангидридом уксусной кислоты:
Реакции с участием полуацетального гидроксила
1. Взаимодействие со спиртами с образованием гликозидов
Гликозиды – это производные углеводов, у которых гликозидный гидроксил замещен на остаток какого-либо органического соединения.
Содержащийся в циклических формах глюкозы полуацетальный (гликозидный) гидроксил является очень реакционноспособным и легко замещается на остатки различных органических соединений.
В случае глюкозы гликозиды называются глюкозидами. Связь между углеводным остатком и остатком другого компонента называется гликозидной.
Гликозиды построены по типу простых эфиров.
При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу:
В данных условиях в реакцию вступает только гликозидный гидроксил, спиртовые гидроксильные группы в реакции не участвуют.
Гликозиды играют чрезвычайно важную роль в растительном и животном мире. Существует огромное число природных гликозидов, в молекулах которых с атомом С (1) глюкозы остатки самых различных соединений.
Реакции окисления
Более сильный окислитель – азотная кислота НNO3 – окисляет глюкозу до двухосновной глюкаровой (сахарной) кислоты:
В ходе этой реакции и альдегидная группа – СНО и первичная спиртовая группа — СН2ОН окисляются до карбоксильных – СООН.
Видеоопыт Окисление глюкозы кислородом воздуха в присутствии метеленового голубого
Рубрики: Углеводы Теги: Углеводы
6. Технологические способы снижения эмиссии фенола и формальдегида из древесно-стружечных плит.
Еще до выхода стандартов, регламентирующих содержание фенола и формальдегида в материалах, было изучено влияние условий горячего прессования на степень эмиссии. Было установлено, что при увеличении температуры и продолжительности прессования существенно снижается содержание свободных фенола и формальдегида в материалах. Также было установлено, что с увеличением влажности древесной стружки в ДКМ, увеличивается эмиссия этих веществ.
Особенно следует указать на важность такой технологической операции, как отделка древесно-стружечных плит. Этот способ позволяет практически полностью устранить эмиссию поллютантов в атмосферу чисто механическим путем
Он очень удобен, потому как плиты, так или иначе, подвергаются отделке по эстетическим причинам. В сочетании с другими способами, отделка позволяет практически полностью устранить эмиссию вредных веществ.Для того чтобы максимально полно рассмотреть возможности снижения эмиссии поллютантов, необходимо поэтапно рассмотреть способы, применяемые в ходе всего технологического и жизненного цикла потенциально опасных материалов. Выделение фенола и формальдегида из ДСП зависит от многих факторов, но в первую очередь от вида связующих веществ (смол), добавок, условий прессования, заключительной технологической обработки и от специфики старения материала. Наиболее важными способами снижения выделения поллютантов являются:• Использование связующих смол со сниженными концентрациями поллютантов;• Использование модифицированных смол с низкой степенью эмиссии составляющих (например, модифицированных мочевиноформальдегидных смол);• Внедрение уловителей выделяющихся веществ;• Применение специальной обработки, нанесение пленок и других защитных покрытий на поверхность готовых плит, с целью снижения или предотвращения диффузии; Рассмотрим подробнее способы снижения эмиссии, связанные с варьированием свойств связующих смол. В условиях современного производства, по большей части используются карбамидные мочевиноформальдегидные связующие смолы. На их долю приходится примерно 90% всех полимерных связующих.. Карбамидные смолы имеют невысокую стоимость, высокую скорость отверждения, хорошие механические характеристики. За счет варьирования состава технологических смесей, имеется возможность снижать уровень эмиссии формальдегида (до 8 мг поллютанта на 100 г сухой плиты). Мольное отношение карбамид/формальдегид является определяющим фактором для водостойкости, скорости отверждения и уровня эмиссии свободного формальдегида из готовой продукции. При снижении мольного отношения карбамид/формальдегид резко падает водостойкость и скорость отверждения, но так же снижается уровень эмиссии поллютантов. Для увеличения водостойкости и скорости отверждения применяется модифицирование связующей смолы меламином. Такая добавка устраняет проблемы водостойкости и дополнительно снижает эмиссию, но смолы с модификацией намного дороже смол без модификации.Не менее важным является способ снижения эмиссии за счет введения уловителей загрязняющих веществ. В качестве уловителей могут применяться органические вещества танины – полифенольные экстракты из древесины и коры. Они являются побочным продуктом деревоперерабатывающих производств. Танины в результате многоступенчатой реакции полимеризации способны образовывать полимеры с прочными связями в молекуле, которые прекрасно подходят в качестве связующего вещества для ДКМ. За счет образования прочных внутримолекулярных связей снижается диффузионная эмиссия фенола и формальдегида из фанеры, древесностружечных и древесноволокнистых плит. В случае использования связующих смол с низким содержанием поллютантов и дополнительным введением танинов, возможно достижение уровня эмиссии близкого к показателям натуральной древесины.
На данный момент методы снижения эмиссии фенола и формальдегида из строительных материалов весьма разнообразны и активно развиваются. Но с точки зрения эффективности, а также реализуемости в промышленном масштабе, имеют неоднозначные последствия
Для полноценного и масштабного внедрения, наиболее важно нивелировать технологические и экономические сложности в применении этих методов
Амины
Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.
Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH2, называют первичными аминами.
Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами. Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:
СH3-NH-CH3 | СH3-NH-CH2-CH3 |
диметиламин | метилэтиламин |
Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами. В общем виде формулу третичного амина можно записать как:
При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.
Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид CnH2n+3N.
Ароматические амины с только одним непредельным заместителем имеют общую формулу CnH2n-5N